据美国物理学家组织网报道,华盛顿大学圣·路易斯医学院科学家开发出一种迅速探测脑中髓磷脂含量的新方法,可用于绘制脑细胞的髓鞘分布图,而此前要分析髓鞘分布只能通过解剖。新方法有助于绘制更准确全面的脑线路图,增进人们对大脑工作原理的理解,并有助于开发诊断和治疗脑疾病的方法。相关研究发表在近日出版的《神经科学期刊》上。
该研究是人脑连接组项目(Human Connectome Project)的一部分,目标是用5年时间绘制出人脑线路图。对于科学家来说,探测大脑的结构和功能,就像探险家来到外星球,任何标志物如山脉、河流、森林都有助于摸清当地情况。要绘制出完整的大脑结构路线图,不能错过任何标志。
髓磷脂含量分布是表示神经元分支和信息传递速度的重要指标。髓鞘是包在神经元分支外面的白色膜层,成分是髓磷脂。神经元分支也叫神经突,包括轴突、树突、突触等,许多分支被髓鞘包裹,有髓鞘包裹的分支其信号传递更快,可达到100米/秒。
以前研究髓鞘分布细微差异的唯一途径是尸体解剖,将大脑取出切片,然后对髓磷脂染色分析。新方法将当前的两种磁共振成像(MRI)扫描技术结合起来,利用扫描数据来绘制脑中的髓磷脂分布图,用不同颜色代表髓鞘分布密度水平,如红色和黄色表示髓磷脂含量高的区域,蓝色、紫色和黑色表示含量水平较低,定位更加精确迅速,通过MRI扫描10分钟内就能得到数据。
“大脑约有900亿个神经元,而神经元之间传输信息的各级分支多达150万亿。”华盛顿大学解剖与神经生物学院的大卫·万·艾森说,“新方法对于理解这一复杂器官非常有用,髓磷脂地图会有助于人们进一步理解大脑终端是怎样跟其他部位联系的。”
“人们普遍认为,脑皮层都是由完全一样的信息处理器组成,”万·艾森说,“但根据我们绘制的图像,表明各个脑区明显不同。”
研究小组发现,髓磷脂密度水平最高的脑区,与眼睛等五种感官信息处理初期以及运动控制相关联,大量神经元拥挤在这些区域,但它们之间的连接却更简单。科学家推测,这些脑区主要是通过“并行处理”的方式来处理信息,即每个细胞不是独立地解决一个复杂问题,而是分成不同的工作组,同时处理问题的不同部分。髓磷脂密度更低的地方包括那些与语言能力、思考能力和使用工具能力相关的区域,这些区域的脑细胞密度较低,每个细胞都比较大,与周边细胞之间的连接也更复杂。
万·艾森还指出,新方法能让参与“人脑连接组计划”的各个小组普遍掌握,快速绘制髓鞘分布图。利用这种髓鞘分布制图技术和其他各种分析技术,项目组成员能更快获得数据,完成全部人脑图谱的制作。(生物谷 Bioon.com)
doi:10.1523/?JNEUROSCI.2180-11.2011
PMC:
PMID:
Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI
Matthew F. Glasser and David C. Van Essen
Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.