杂交捕获家族“核心成员”大揭秘!
近年来,高通量测序技术发展迅速,测序成本也在逐渐降低。但就现阶段而言,全基因组测序的成本依然很高,且测序之后得到的庞大数据量也导致数据分析速度缓慢。与全基因组测序相比,靶向捕获测序可以针对感兴趣的区域进行富集,单个样本所需测序数据量显著降低且分析速度更快。不仅如此,靶向测序还可以对目标区域进行深度测序,在遗传突变检测、肿瘤筛查等领域,相同测序成本下靶向捕获测序能达到更高的灵敏度。
图1 .3种测序方法简单对比
靶向捕获包含杂交捕获、多重PCR和分子倒置探针捕获。和PCR以及分子倒置探针捕获(MIP)方法相比,杂交捕获具有捕获区段大(可达几百MB)和探针均一性好的优势。
均一性是评价捕获技术很关键的参数,均一性好后续测序成本就会下降。缺点是容易捕获非目标片段,造成成本增加。因为杂交前样本会被随机打断到比较合适的长度,探针捕获时可能和目标片段部分杂交,导致一些含有部分目标区段的文库被捕获。所以杂交捕获的特异性较差,容易捕获非目标区段。
图2.靶向捕获技术优劣势对比图
根据探针的状态和杂交状况不同杂交捕获分为固态杂交和液态杂交。固相杂交捕获法是先选定目标DNA区域,在芯片上修饰与目标区域互补的探针,随后在芯片上进行DNA与探针的杂交反应,最后将与探针杂交的DNA洗脱下来用于后续的测序工作。液相杂交捕获技术是根据核酸分子碱基互补配对原理,在溶液中生物素标记的探针与靶区域特异性结合,通过链霉亲和素磁珠对探针捕获到的目的片段进行富集的技术。
固相杂交由于其在花费与操作上的劣势,已基本被淘汰,液相杂交捕获法是目前被广泛应用的靶向测序方法,具有探针设计难度低、探针容错性高等优点。
图3 .固(左)/液(右)相杂交捕获原理图
在液相捕获过程中,还有2个不可或缺的角色接头序列封阻剂(Universal Blocker)和重复序列封阻剂(Cot-1 DNA)。其中,Universal Blocker含有修饰碱基,可针对不同的index序列进行封闭;Cot-1 DNA来源于人胎盘中提取的基因组DNA,为人基因组中长约50至300 bp的高度重复序列,能够方便、有效地对待检测样品核酸序列中的重复序列进行封闭,屏蔽重复序列,从而避免核酸杂交过程中非特异性信号的干扰。两种封阻剂共同作用,最终实现对待检测核酸样本中核酸序列的有效捕获。
图4.2种封闭试剂的作用原理
Cot-1最早是在核酸杂交实验中,用来避免探针的非特异性结合所导致的背景噪音。具体到液相杂交捕获实验中,探针虽然是人为设计的序列,可以最大程度避免探针和高拷贝/重复性序列的结合,但当Cot-1不足时,探针和文库还是会产生一定数量的氢键而实现非特异性地结合,即使这种结合并不非常充分,或者只有部分区域的结合,但这种结合会导致捕获特异性显著下降。
Universal Blocker的作用相对明确,就是阻止不同文库分子通过adapter之间的互补序列产生结合。
图5.Cot-1和Blocker不足时非特异结合示意图
翌圣全外显子捕获产品,包含全外探针、杂交清洗试剂盒、Blocking Oligo、Post-PCR Primer和链霉亲和素磁珠,在遗传突变检测、肿瘤筛查等领域为您提供目标区域更加明确,覆盖度更深、数据准确性更高,也更加经济的全套捕获解决方案!