摘要: 来自英国剑桥医学研究学会(Medical Research Council,MRC)分子生物学实验室的研究人员设计了一种RNA合成酶,这种酶能组装合成多达约95个核苷酸长度的RNA,这对于揭开RNA世界的奥秘具有重要意义。这一研究成果公布在Science杂志上。
生物通报道:来自英国剑桥医学研究学会(Medical Research Council,MRC)分子生物学实验室的研究人员设计了一种RNA合成酶,这种酶能组装合成多达约95个核苷酸长度的RNA,这对于揭开RNA世界的奥秘具有重要意义。这一研究成果公布在Science杂志上。
有关于生命起源的问题,DNA,RNA和蛋白质的关系就象连环套,谁先谁后就如同先有鸡还是先有蛋一样难以捉摸。近年来经过科学家的不断努力,终于发现RNA可以自我复制,因此而产生“RNA世界”假说。20世纪80年代,科学家就已经设法在生物体内合成RNA,使得这一假说开始有了真实性。这一假说认为在40亿年前的太古代,地球上某些地方已经诞生了同RNA自我复制系统——“RNA世界”,之后RNA不但能与无机物合成,而且能与原始地球上出现的蛋白质互相作用,迎来它们的共生时代——“RNA一蛋白质世界”,逐渐形成原始生命。接着以RNA为模板合成DNA和蛋白质,RNA又将大多数催化功能交给具有更高活性的蛋白质,将遗传物质传递功能交给了在化学性上更稳定的DNA。久而久之终于变成了现在的生物世界,也就是“DNA世界”。
根据“RNA世界”假说,在基于DNA的生命出现之前,RNA可能曾经在生物学的过程中扮演过主要的遗传和催化作用的角色。一种本身为RNA多聚酶的核酶(它可以复制并转录原始的RNA基因组)是这一假说的关键。以往的研究产生了R18 RNA多聚酶这种核酶,它有着有限的多聚酶活性,并能合成至多14个核苷酸的RNA。
在这篇文章中,研究人员以这种R18核酶为基础,设计了一种能组装合成多达约95个核苷酸长度的RNA合成酶,这种新的酶还能够合成比母体R18核酶更为广谱的RNA序列,其中包括一个具有酶活性的RNA。同期Science杂志上,Micahel Yarus对以”Climbing in 190 Dimensions“点评了研发出这种酶的方法。
另外有关核酶的研究其实也不少,近期美国西北大学的就利用X射线,成功地在原子水平上观察到RNA如何相互作用并生成蛋白结晶,这一成果公布在Nature杂志上。
通过这项研究,研究人员得到了RNase P是如何识别、结合以及剪切tRNA的详细过程。RNase P通过构型互补与碱基配对等相互作用,完成大部分的tRNA识别过程,RNase P中的蛋白对识别tRNA起到辅助作用。之后,RNase P靠近tRNA,在金属离子协助下,切断其一个化学键,使tRNA断成较小RNA分子,以满足细胞活动所需。
原文摘要:
Ribozyme-Catalyzed Transcription of an Active Ribozyme
A critical event in the origin of life is thought to have been the emergence of an RNA molecule capable of replicating a primordial RNA “genome.” Here we describe the evolution and engineering of an RNA polymerase ribozyme capable of synthesizing RNAs of up to 95 nucleotides in length. To overcome its sequence dependence, we recombined traits evolved separately in different ribozyme lineages. This yielded a more general polymerase ribozyme that was able to synthesize a wider spectrum of RNA sequences, as we demonstrate by the accurate synthesis of an enzymatically active RNA, a hammerhead endonuclease ribozyme. This recapitulates a central aspect of an RNA-based genetic system: the RNA-catalyzed synthesis of an active ribozyme from an RNA template.